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Overview

» Basic notions: semiorthogonal decomposition, exceptional
collection

» Question on exceptional collection, generalization.

» Main results
» Twisted grassmannians
» Statement of the theorem
» Sketch of proof
» Twisted flags
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Semiorthogonal decomposition

T triangulated category which is linear over a field F.
S;: full triangulated subcategory of 7.

Sit: full subcategory of T given by T € T such that for all S € S;
Hom(S, T) =0.
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T triangulated category which is linear over a field F.
S;: full triangulated subcategory of 7.
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Hom(S, T) =0.

A sequence (Si,...,Sy) such that (S,-,S,-L> =T forall1<i<n
is called semiorthogonal if

SiCcSitforalll1<i<j<n



Semiorthogonal decomposition

T triangulated category which is linear over a field F.

S;: full triangulated subcategory of 7.

Sit: full subcategory of T given by T € T such that for all S € S;

Hom(S, T) =0.

A sequence (Si,...,Sy) such that (S,-,S,-L> =T forall1<i<n
is called semiorthogonal if

SiCcSitforalll1<i<j<n

A semiorthogonal sequence (S, ...,Sy) is called a
semiorthogonal decomposition for T if T = (S1,...,Sn).
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Exceptional collection

A sequence (Ej, ..., E,) of obejcts in T such that forall 1 </ <n

0 ifk+#0
F otherwise

Hom(E,-, E,'[k]) = {

is called exceptional if

Hom(E;, Ei[k]) =0 for all 1 <i < j < nand all k.
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Exceptional collection

A sequence (Ej, ..., E,) of obejcts in T such that forall 1 </ <n

0 ifk+#0
F otherwise

Hom(E,-, E,'[k]) = {

is called exceptional if

Hom(E;, Ei[k]) =0 for all 1 <i < j < nand all k.

An exceptional sequence (Eq, ..., E,) is said to be full if
T =(E,...,E).
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Examples: semiorthogonal decomposition

(i) Any full traingulated subcategory S C T defines a

semiorthogonal decomposition for 7 if (S,S*) = T.
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Examples: semiorthogonal decomposition

(i) Any full traingulated subcategory S C T defines a
semiorthogonal decomposition for 7 if (S,S*) = T.

(ii) Let (S1,...,Sn) be a sequence of full traingulated
subcategories of T such that §; C SJ-L forall 1<i<j<n.
If the sequence generates T, then this sequence defines a
semiorthogonal decomposition for 7 (without assuming the
condition (S;, S*) = T).
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Examples: semiorthogonal decomposition

(1)

(i)

(iii)

Any full traingulated subcategory S C T defines a
semiorthogonal decomposition for 7 if (S,S*) = T.

Let (Si,...,Sn) be a sequence of full traingulated
subcategories of T such that §; C SJ-L forall 1<i<j<n.
If the sequence generates T, then this sequence defines a
semiorthogonal decomposition for 7 (without assuming the
condition (S;, S*) = T).

Let (E,..., Ep) be a (full) exceptional collection in 7. Then,
the seq.

((E1)s -5 (En))

gives a semiorthogonal seq. (decomposition).



Examples: exceptional collection

T = D(X) := the bounded derived category of coherent sheaves
on a scheme X. For any F*,G®* € T,

Hom7(F*, G*[k]) = Ext*(F*,G*).
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Examples: exceptional collection

T = D(X) := the bounded derived category of coherent sheaves
on a scheme X. For any F*,G®* € T,

Hom7(F*,G°[k]) = Ext*(F*,G*).
(i) (Beilinson) Let X =PZ =P(V). Then,
(O(—n),0(—n+1),...,0(-1),0)

is a full exceptional sequence:
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Examples: exceptional collection

T = D(X) := the bounded derived category of coherent sheaves
on a scheme X. For any F*,G®* € T,

Hom7(F*,G°[k]) = Ext*(F*,G*).
(i) (Beilinson) Let X =PZ =P(V). Then,
(O(—n),0(—n+1),...,0(-1),0)

is a full exceptional sequence:

. Ext*(0(j), 0(i)) = HX(X, 0(i — j)) = F (if i =j, k =0), or 0.
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Examples: exceptional collection

T = D(X) := the bounded derived category of coherent sheaves
on a scheme X. For any F*,G®* € T,

Hom7(F*,G°[k]) = Ext*(F*,G*).
(i) (Beilinson) Let X =PZ =P(V). Then,
(O(—n),0(—n+1),...,0(-1),0)

is a full exceptional sequence:

. Ext*(0(j), 0(i)) = HX(X, 0(i — j)) = F (if i =j, k =0), or 0.
Let &:=0(1)K Q, where 0 » 0(-1) > Ve 0 — Q — 0.
For idy = s € H°(X x X, &), we have Z(s) = A C X x X and

0= A(E*) = A"HE) = - = & = Oxxx — Opa — 0. (1)
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For # € D(X x X), define ®(%#) : T — T by
G — (m)«(m59 @ F).

Then, for any 7 € T, we have

O(Op)(H) = A, (N (E*))(H) = H (X, H @ Q'(i)) @ O(—i).

As @ is exact, the result follows from (1).
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For # € D(X x X), define ®(%#) : T — T by
G — (m)«(m59 @ F).

Then, for any 7 € T, we have

O(Op)(H) = A, (N (E*))(H) = H (X, H @ Q'(i)) @ O(—i).

As @ is exact, the result follows from (1).

(ii) Exceptional collection need not always exist: for instance, if X
is a smooth projective variety of dim(X) = n with trivial canonical
class, then

F =Homy(E,E) = Ext"(E,E)* = 0.
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Question : exceptional collection

Kapranov constructed full exceptional collections on
Grassmannians and projective quadrics.

Question
Does any projective homogeneous variety G/P under a split semi
simple algebraic group G admit a full exceptional collection?



Question : exceptional collection

Kapranov constructed full exceptional collections on
Grassmannians and projective quadrics.

Question
Does any projective homogeneous variety G/P under a split semi
simple algebraic group G admit a full exceptional collection?

. Type of G = A, Gy: full exceptional collections were constructed
by Kapranov, Kuznetsov.

. Types of G = By, Cp, Dy,: full exceptional collections for
P = P1, P> were constructed by Kapranov, Kuznetsov.

. Type of G = Eg, E7, Eg, F4: this is completely open.
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Generalization: semiorthogonal decomposition

. Orlov and Kuznetsov generalized Kapronov's results on

grassmannians and quadrics to semiorthogonal decompositions,

respectively.

E.g. Given a projective bundle p : P(&) — X associated to a
vector bundle & over X of rank n+ 1, the sequence

(D(X) ® Op(g)(—n), - .., D(X) @ Op(g)(—1), D(X))

gives a semiorthogonal decomposition for P(&).
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Generalization: semiorthogonal decomposition

. Orlov and Kuznetsov generalized Kapronov's results on
grassmannians and quadrics to semiorthogonal decompositions,
respectively.

E.g. Given a projective bundle p : P(&) — X associated to a
vector bundle & over X of rank n+ 1, the sequence

(D(X) ® Op(g)(—n), - .., D(X) @ Op(g)(—1), D(X))

gives a semiorthogonal decomposition for P(&).

. Bernardara extended Orlov's result on projective bundles to the
twisted forms.

. The goal of this talk is to extend Orlov's result on grassmannian
bundles to the twisted forms.
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Twisted grassmannians

X : Noetherian scheme over a field of char. 0

4/ : sheaf of Azumaya algebras of rank n® over X
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Twisted grassmannians

X : Noetherian scheme over a field of char. 0

4/ : sheaf of Azumaya algebras of rank n® over X

For 1 < k < n, a twisted grassmannian p : Gr(k, /) — X is

defined by the representable functor

{ sheaves of left ideals .# of ¢*&/ | ¢*o/ /.7 is a
locally free &'y-modules of rank n(n — k)}.

(YgX)|—>
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Twisted grassmannians

X : Noetherian scheme over a field of char. 0

4/ : sheaf of Azumaya algebras of rank n® over X

For 1 < k < n, a twisted grassmannian p : Gr(k, /) — X is

defined by the representable functor

{ sheaves of left ideals .# of ¢*&/ | ¢*o/ /.7 is a
locally free &'y-modules of rank n(n — k)}.

(YgX)|—>

3 étale covering i : U — X and a locally free sheaf & of rank n
over U with the following pullback diagram

Gr(k, &) =~ Gr(k, End(&)) 2 Gr(k, <)

AR |

U ]
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Consider the tautological exact sequence of sheaves on Gr(k, &)
0—-Z%—q"6—2—0,

where rank(Z) = k.
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Consider the tautological exact sequence of sheaves on Gr(k, &)
0—-Z%—q"6—2—0,

where rank(Z) = k.

For a partition aw = (a1, -+ - , ax) with 0 < oj < n — k, we denoted
by §¢ the Schur functor for a.

E.g. . If V is a k-dimensional vector space, then S*V is the
irreducible representation of GL(V) with the highest weight .

. For n =4 and k = 2, we have SU:9% = Sym' %,

SOV = N2, SCNR = %@ N2%, and SCAR = N2% @ N2A.
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Main result

Define S(«) to be the full subcategory of D(Gr(k, 7)) generated
by .4 in D(Gr(k, o)) satisfying

MG (k,6)~= §N © S°K,

for some A" € D(U).
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Main result

Define S(«) to be the full subcategory of D(Gr(k, 7)) generated
by .4 in D(Gr(k, o)) satisfying

MG (k,6)~= §N © S°K,

for some A" € D(U).

Theorem

Let (S(a) | o= (a1, ,ak),0 < aj < n— k) be a sequence of
the full subcategories of D(Gr(k,<7)) by the lexicographical order
on «. Then this sequence gives a semiorthogonal decomposition of
D(Gr(k, <7)).
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Proof of theorem

Let o # o with 0 < aj, o} < n— k.
Claim 1: RHom(#,.#") =0 for 4 € S(a) and 4" € S(&).
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Proof of theorem

Let o # o with 0 < aj, o} < n— k.
Claim 1: RHom(#,.#") =0 for 4 € S(a) and 4" € S(&).

By the local to global Ext spectral sequence, it's enough to show
that RFom(.4 , .#") = 0.

Let |Gk )~ G N ® S°% and M |Gk5)~= §"N' ® SO X.

13/21



Proof of theorem

Let o # o with 0 < aj, o} < n— k.
Claim 1: RHom(#,.#") =0 for 4 € S(a) and 4" € S(&).

By the local to global Ext spectral sequence, it's enough to show
that RFom(.4 , .#") = 0.

Let |Gk )~ G N ® S°% and M |Gk5)~= §"N' ® SO X.

By the Littlewood-Richardson rule, we have
RAom(S* R, S B) = S*' % @ (S°R)* = @ ns - S°%,

where (3 is of the form (f1,---, k), with —(n — k) < B; < n— k.
By the Borel-Bott-Weil theorem, we have HO(Gr(k, &), S°%#) = 0.
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Proof of theorem

Therefore, we have
Rq.(#om(S°%, S %)) = 0. (2)

It is enough to show the result locally. By the adjoint property of
Rq. and g*, projection formula, and (2), we have
ijom(%‘Gr(k,é”)a%,|Gr(k,é“))
= RAom(q" N , ¢*N' @ Hom(S°R, S R))
= RAtom(.N , Ra.(q"N' @ Hom(S°R,S*X)))
= RAom(N |, N' @ R (Hom(S°R,S*R)))
=0.
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Proof of theorem

Claim 2: (S(«)) generates D(Gr(k, .<7)).

3 sheaves .%,, of right ®2l_modules and sheaves ¥, of left
7®lel_modules such that

T ~ SR @ q* ()21, G, ~ q* (&%) @ 592"
Moreover, the sequence

X NKRD* — OGr(k,(a@)XGr(k,g’) — OA(Gr(k,(f)/U) — 0 descends to the

sequence F (1) X Y1y = Ogr(k,o)xGr(k,) = Oa(Gr(k,or)/x) = 0
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Proof of theorem

Claim 2: (S(«)) generates D(Gr(k, .<7)).

3 sheaves .%,, of right ®2l_modules and sheaves ¥, of left
7®lel_modules such that

T ~ SR @ q* ()21, G, ~ q* (&%) @ 592"

Moreover, the sequence
A NRI* — OGr(k,(o@)XGr(k,g’) — OA(Gr(k,(f)/U) — 0 descends to the
sequence F (1) X Y1y = Ogr(k,o)xGr(k,) = Oa(Gr(k,or)/x) = 0

Hence, we have the Koszul resolution:
0— /\k(n—k)({g-(l) X g(l)) — /\k(n_k)_l(ﬁ(l) X g(l)) — .

= Fy W Y1) = Ocr(k,a)xxGr(k,o) = OA(Gr(k,e)/x) — 0-
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Proof of theorem

As N"(F 1) B Y)) = @M:m Fo® Gy for 1 < m < k(n— k),
OA(Gr(k,a7)/x) € (M1 Fa @ T3%a+ |0 < |af < k(n — k))

of D(Gr(k, <) x Gr(k,<)).
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Proof of theorem

As N"(F 1) B Y)) = @M:m Fo® Gy for 1 < m < k(n— k),
OA(Gr(k,a7)/x) € (M1 Fa @ T3%a+ |0 < |af < k(n — k))

of D(Gr(k, <) x Gr(k,<)).

Since we have .# = R(71)«(75. 4 @ Op(Gr(k,or)/x)) for any
A € D(Gr(k, <)), it is enough to verify that

R(m1)s (m5M @ (7] T ® T5%a)) € S(a) :

R(m1)s (134 @ (7] Foe @ T5G0r)) = R(m1)s (13(M @ Gar)) © Fo,
this is isomorphic to

q* (Rqu(# © S* 2)) ® S°% over Gr(k,&). O
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Twisted flags

Let 1 < ky < --- < kpn < n be a sequence of integers.

We denote by Fl(ki, - , km, <7) the functor defined by

(Y 4 X) — the set of sheaves of left ideals . C --- C .#, of
¢*of such that ¢*o/ /.7 is a locally free O'y-modules of rank
n(n — k;).
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Twisted flags

Let 1 < ky < --- < kpn < n be a sequence of integers.

We denote by Fl(ki, - , km, <7) the functor defined by

(Y 4 X) — the set of sheaves of left ideals . C --- C .#, of
¢*of such that ¢*o/ /.7 is a locally free O'y-modules of rank
n(n — k;).

3 an étale covering i : U — X and a locally free sheaf & of rank n
over U with the following pullback diagram

Fi(ki, - , km, &nd(&)) —2 Fi(ke, - , km, <)

| | ¥

U d X.
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We have the tautological flags

Hy = B — §E > Dy >

where rank(Z;) = ki and rank(Z2;) = n — k;.

- o@ma
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We have the tautological flags
Hy S R — §E > Dy~ Dy,

where rank(Z;) = ki and rank(Z2;) = n — k;.

Let (1), -+ ,a(m — 1),a(m) be partitions of the forms
(0417"' 70”(1),... 7(0417"' 704km,1)7(0417"' 704km)
with 0 < o < ko — ki,- -+ ,0 < @i < km — km—1,0 < @i < n— k,

respectively.
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We have the tautological flags
Hy S R — §E > Dy~ Dy,

where rank(Z;) = ki and rank(Z2;) = n — k;.

Let (1), -+ ,a(m — 1),a(m) be partitions of the forms
(0417"' 70”(1),... 7(0417"' 704km,1)7(0417"' 704km)
with 0 < o < ko — ki,- -+ ,0 < @i < km — km—1,0 < @i < n— k,

respectively.
We define S(a(1),---,a(m)) to be the full subcategory of
D(FI(ki,- - , km, 7)) generated by .# in D(Fl(k1,- - , km, %))
satisfying

M |Fi(h e omsy= TN @ SV @ - © SN,

for some A" € D(U).
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Corollary

Let (S(a(1),--- ,a(m)) |V partitions of the form a(i),1 < i < m)
be a sequence of the full subcategories of D(Fl(ki,- - , km, 7)) in
lexicographical order. Then this gives a semiorthogonal
decomposition of D(Fl(ky, -+ , km, <)).
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Corollary

Let (S(a(1),--- ,a(m)) |V partitions of the form a(i),1 < i < m)
be a sequence of the full subcategories of D(Fl(ki,- - , km, 7)) in
lexicographical order. Then this gives a semiorthogonal
decomposition of D(Fl(ky, -+ , km, <)).

Proof
Induction on m. Assume that the result holds for m — 1. There are
projections

Fl(ki, - kms &) 22 o 2 Fl(km, &) 25 U

and
Fl(ke, -, kmy ) 22 oo B Fl(km, 27) 25 X.
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Let 5 C (g1 00 qm—1)"& be the tautological subsheaf over
Fi(ka, - , km, &).

Let &7/ be the sheaf of Azumaya algebra over Fl(ky, -+ , km, &)
from &nd(#)) by descent.
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Let 5 C (g1 00 qm—1)"& be the tautological subsheaf over
Fi(ka, - , km, &).

Let &7/ be the sheaf of Azumaya algebra over Fl(ky, -+ , km, &)
from &nd(#)) by descent.

Then, we have
Fi(ki, - km, &) = Greygg, .. ko) (K1, %)

and
FI(ki, - s kmy ) = Grei(ky, e ko) (K1, 7).

Now the result follows from the proof Theorem.
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Thank you.
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