Semiorthogonal decomposition for twisted grassmannians

Sanghoon Baek（KAIST）

Symposium in Algebraic Geometry，Haeundae，Dec．， 2012

Overview

- Basic notions: semiorthogonal decomposition, exceptional collection
- Question on exceptional collection, generalization.
- Main results
- Twisted grassmannians
- Statement of the theorem
- Sketch of proof
- Twisted flags

Semiorthogonal decomposition

\mathcal{T} : triangulated category which is linear over a field F.
\mathcal{S}_{i} : full triangulated subcategory of \mathcal{T}.
\mathcal{S}_{i}^{\perp} : full subcategory of \mathcal{T} given by $T \in \mathcal{T}$ such that for all $S \in \mathcal{S}_{i}$ $\operatorname{Hom}_{\mathcal{T}}(S, T)=0$.

Semiorthogonal decomposition

\mathcal{T} : triangulated category which is linear over a field F.
\mathcal{S}_{i} : full triangulated subcategory of \mathcal{T}.
\mathcal{S}_{i}^{\perp} : full subcategory of \mathcal{T} given by $T \in \mathcal{T}$ such that for all $S \in \mathcal{S}_{i}$ $\operatorname{Hom}_{\mathcal{T}}(S, T)=0$.

A sequence $\left(\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}\right)$ such that $\left\langle\mathcal{S}_{i}, \mathcal{S}_{i}^{\perp}\right\rangle=\mathcal{T}$ for all $1 \leq i \leq n$ is called semiorthogonal if

$$
\mathcal{S}_{i} \subset \mathcal{S}_{j}^{\perp} \text { for all } 1 \leq i<j \leq n .
$$

Semiorthogonal decomposition

\mathcal{T} : triangulated category which is linear over a field F.
\mathcal{S}_{i} : full triangulated subcategory of \mathcal{T}.
\mathcal{S}_{i}^{\perp} : full subcategory of \mathcal{T} given by $T \in \mathcal{T}$ such that for all $S \in \mathcal{S}_{i}$ $\operatorname{Hom}_{\mathcal{T}}(S, T)=0$.

A sequence $\left(\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}\right)$ such that $\left\langle\mathcal{S}_{i}, \mathcal{S}_{i}^{\perp}\right\rangle=\mathcal{T}$ for all $1 \leq i \leq n$ is called semiorthogonal if

$$
\mathcal{S}_{i} \subset \mathcal{S}_{j}^{\perp} \text { for all } 1 \leq i<j \leq n .
$$

A semiorthogonal sequence $\left(\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}\right)$ is called a semiorthogonal decomposition for \mathcal{T} if $\mathcal{T}=\left\langle\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}\right\rangle$.

Exceptional collection

A sequence $\left(E_{1}, \ldots, E_{n}\right)$ of obejcts in \mathcal{T} such that for all $1 \leq i \leq n$

$$
\operatorname{Hom}\left(E_{i}, E_{i}[k]\right)= \begin{cases}0 & \text { if } k \neq 0 \\ F & \text { otherwise }\end{cases}
$$

is called exceptional if
$\operatorname{Hom}\left(E_{j}, E_{i}[k]\right)=0$ for all $1 \leq i<j \leq n$ and all k.

Exceptional collection

A sequence $\left(E_{1}, \ldots, E_{n}\right)$ of obejcts in \mathcal{T} such that for all $1 \leq i \leq n$

$$
\operatorname{Hom}\left(E_{i}, E_{i}[k]\right)= \begin{cases}0 & \text { if } k \neq 0 \\ F & \text { otherwise }\end{cases}
$$

is called exceptional if
$\operatorname{Hom}\left(E_{j}, E_{i}[k]\right)=0$ for all $1 \leq i<j \leq n$ and all k.

An exceptional sequence $\left(E_{1}, \ldots, E_{n}\right)$ is said to be full if $\mathcal{T}=\left\langle E_{1}, \ldots, E_{n}\right\rangle$.

Examples: semiorthogonal decomposition

(i) Any full traingulated subcategory $\mathcal{S} \subset \mathcal{T}$ defines a semiorthogonal decomposition for \mathcal{T} if $\left\langle\mathcal{S}, \mathcal{S}^{\perp}\right\rangle=\mathcal{T}$.

Examples: semiorthogonal decomposition

(i) Any full traingulated subcategory $\mathcal{S} \subset \mathcal{T}$ defines a semiorthogonal decomposition for \mathcal{T} if $\left\langle\mathcal{S}, \mathcal{S}^{\perp}\right\rangle=\mathcal{T}$.
(ii) Let $\left(\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}\right)$ be a sequence of full traingulated subcategories of \mathcal{T} such that $\mathcal{S}_{i} \subset \mathcal{S}_{j}^{\perp}$ for all $1 \leq i<j \leq n$. If the sequence generates \mathcal{T}, then this sequence defines a semiorthogonal decomposition for \mathcal{T} (without assuming the condition $\left.\left\langle\mathcal{S}_{i}, \mathcal{S}_{i}^{\perp}\right\rangle=\mathcal{T}\right)$.

Examples: semiorthogonal decomposition

(i) Any full traingulated subcategory $\mathcal{S} \subset \mathcal{T}$ defines a semiorthogonal decomposition for \mathcal{T} if $\left\langle\mathcal{S}, \mathcal{S}^{\perp}\right\rangle=\mathcal{T}$.
(ii) Let $\left(\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}\right)$ be a sequence of full traingulated subcategories of \mathcal{T} such that $\mathcal{S}_{i} \subset \mathcal{S}_{j}^{\perp}$ for all $1 \leq i<j \leq n$. If the sequence generates \mathcal{T}, then this sequence defines a semiorthogonal decomposition for \mathcal{T} (without assuming the condition $\left.\left\langle\mathcal{S}_{i}, \mathcal{S}_{i}^{\perp}\right\rangle=\mathcal{T}\right)$.
(iii) Let $\left(E_{1}, \ldots, E_{n}\right)$ be a (full) exceptional collection in \mathcal{T}. Then, the seq.

$$
\left(\left\langle E_{1}\right\rangle, \ldots,\left\langle E_{n}\right\rangle\right)
$$

gives a semiorthogonal seq. (decomposition).

Examples: exceptional collection

$\mathcal{T}=\mathrm{D}(X):=$ the bounded derived category of coherent sheaves on a scheme X. For any $\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet} \in \mathcal{T}$,
$\operatorname{Hom}_{\mathcal{T}}\left(\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet}[k]\right)=\operatorname{Ext}^{k}\left(\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet}\right)$.

Examples: exceptional collection

$\mathcal{T}=\mathrm{D}(X):=$ the bounded derived category of coherent sheaves on a scheme X. For any $\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet} \in \mathcal{T}$,

$$
\operatorname{Hom}_{\mathcal{T}}\left(\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet}[k]\right)=\operatorname{Ext}^{k}\left(\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet}\right)
$$

(i) (Beilinson) Let $X=\mathbb{P}_{F}^{n}=\mathbb{P}(V)$. Then,

$$
(\mathscr{O}(-n), \mathscr{O}(-n+1), \ldots, \mathscr{O}(-1), \mathscr{O})
$$

is a full exceptional sequence:

Examples: exceptional collection

$\mathcal{T}=\mathrm{D}(X):=$ the bounded derived category of coherent sheaves on a scheme X. For any $\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet} \in \mathcal{T}$,

$$
\operatorname{Hom}_{\mathcal{T}}\left(\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet}[k]\right)=\operatorname{Ext}^{k}\left(\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet}\right)
$$

(i) (Beilinson) Let $X=\mathbb{P}_{F}^{n}=\mathbb{P}(V)$. Then,

$$
(\mathscr{O}(-n), \mathscr{O}(-n+1), \ldots, \mathscr{O}(-1), \mathscr{O})
$$

is a full exceptional sequence:
. $\operatorname{Ext}^{k}(\mathscr{O}(j), \mathscr{O}(i))=H^{k}(X, \mathscr{O}(i-j))=F($ if $i=j, k=0)$, or 0 .

Examples: exceptional collection

$\mathcal{T}=\mathrm{D}(X):=$ the bounded derived category of coherent sheaves on a scheme X. For any $\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet} \in \mathcal{T}$,

$$
\operatorname{Hom}_{\mathcal{T}}\left(\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet}[k]\right)=\operatorname{Ext}^{k}\left(\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet}\right)
$$

(i) (Beilinson) Let $X=\mathbb{P}_{F}^{n}=\mathbb{P}(V)$. Then,

$$
(\mathscr{O}(-n), \mathscr{O}(-n+1), \ldots, \mathscr{O}(-1), \mathscr{O})
$$

is a full exceptional sequence:

- $\operatorname{Ext}^{k}(\mathscr{O}(j), \mathscr{O}(i))=H^{k}(X, \mathscr{O}(i-j))=F($ if $i=j, k=0)$, or 0 .
. Let $\mathscr{E}:=\mathscr{O}(1) \boxtimes Q$, where $0 \rightarrow \mathscr{O}(-1) \rightarrow V \otimes \mathscr{O} \rightarrow Q \rightarrow 0$.
For $i d_{v}=s \in H^{0}(X \times X, \mathscr{E})$, we have $Z(s)=\Delta \subset X \times X$ and
$0 \rightarrow \wedge^{n}\left(\mathscr{E}^{*}\right) \rightarrow \wedge^{n-1}\left(\mathscr{E}^{*}\right) \rightarrow \cdots \rightarrow \mathscr{E}^{*} \rightarrow \mathscr{O}_{X \times X} \rightarrow \mathscr{O}_{\Delta} \rightarrow 0$.

For $\mathscr{F} \in \mathrm{D}(X \times X)$, define $\Phi(\mathscr{F}): \mathcal{T} \rightarrow \mathcal{T}$ by

$$
\mathscr{G} \mapsto\left(\pi_{1}\right)_{*}\left(\pi_{2}^{*} \mathscr{G} \otimes \mathscr{F}\right)
$$

Then, for any $\mathscr{H} \in \mathcal{T}$, we have
$\Phi\left(\mathscr{O}_{\Delta}\right)(\mathscr{H})=\mathscr{H}, \Phi\left(\wedge^{i}\left(\mathscr{E}^{*}\right)\right)(\mathscr{H})=H^{\bullet}\left(X, \mathscr{H} \otimes \Omega^{i}(i)\right) \otimes \mathscr{O}(-i)$.
As Φ is exact, the result follows from (1).

For $\mathscr{F} \in \mathrm{D}(X \times X)$, define $\Phi(\mathscr{F}): \mathcal{T} \rightarrow \mathcal{T}$ by

$$
\mathscr{G} \mapsto\left(\pi_{1}\right)_{*}\left(\pi_{2}^{*} \mathscr{G} \otimes \mathscr{F}\right)
$$

Then, for any $\mathscr{H} \in \mathcal{T}$, we have
$\Phi\left(\mathscr{O}_{\Delta}\right)(\mathscr{H})=\mathscr{H}, \Phi\left(\wedge^{i}\left(\mathscr{E}^{*}\right)\right)(\mathscr{H})=H^{\bullet}\left(X, \mathscr{H} \otimes \Omega^{i}(i)\right) \otimes \mathscr{O}(-i)$.
As Φ is exact, the result follows from (1).
(ii) Exceptional collection need not always exist: for instance, if X is a smooth projective variety of $\operatorname{dim}(X)=n$ with trivial canonical class, then

$$
F=\operatorname{Hom}_{\mathcal{T}}(E, E)=\operatorname{Ext}^{n}(E, E)^{*}=0 .
$$

Question : exceptional collection

Kapranov constructed full exceptional collections on Grassmannians and projective quadrics.

Question
Does any projective homogeneous variety G / P under a split semi simple algebraic group G admit a full exceptional collection?

Question : exceptional collection

Kapranov constructed full exceptional collections on
Grassmannians and projective quadrics.

Question

Does any projective homogeneous variety G / P under a split semi simple algebraic group G admit a full exceptional collection?

- Type of $G=A_{n}, G_{2}$: full exceptional collections were constructed by Kapranov, Kuznetsov.
- Types of $G=B_{n}, C_{n}, D_{n}$: full exceptional collections for $P=P_{1}, P_{2}$ were constructed by Kapranov, Kuznetsov.
. Type of $G=E_{6}, E_{7}, E_{8}, F_{4}$: this is completely open.

Generalization: semiorthogonal decomposition

- Orlov and Kuznetsov generalized Kapronov's results on grassmannians and quadrics to semiorthogonal decompositions, respectively.
E.g. Given a projective bundle $p: \mathbb{P}(\mathscr{E}) \rightarrow X$ associated to a vector bundle \mathscr{E} over X of rank $n+1$, the sequence

$$
\left(\mathrm{D}(X) \otimes \mathscr{O}_{\mathbb{P}(\mathscr{E})}(-n), \ldots, \mathrm{D}(X) \otimes \mathscr{O}_{\mathbb{P}(\mathscr{E})}(-1), \mathrm{D}(X)\right)
$$

gives a semiorthogonal decomposition for $\mathbb{P}(\mathscr{E})$.

Generalization: semiorthogonal decomposition

- Orlov and Kuznetsov generalized Kapronov's results on grassmannians and quadrics to semiorthogonal decompositions, respectively.
E.g. Given a projective bundle $p: \mathbb{P}(\mathscr{E}) \rightarrow X$ associated to a vector bundle \mathscr{E} over X of rank $n+1$, the sequence

$$
\left(\mathrm{D}(X) \otimes \mathscr{O}_{\mathbb{P}(\mathscr{E})}(-n), \ldots, \mathrm{D}(X) \otimes \mathscr{O}_{\mathbb{P}(\mathscr{E})}(-1), \mathrm{D}(X)\right)
$$

gives a semiorthogonal decomposition for $\mathbb{P}(\mathscr{E})$.

- Bernardara extended Orlov's result on projective bundles to the twisted forms.
- The goal of this talk is to extend Orlov's result on grassmannian bundles to the twisted forms.

Twisted grassmannians

X : Noetherian scheme over a field of char. 0
\mathscr{A} : sheaf of Azumaya algebras of rank n^{2} over X

Twisted grassmannians

X : Noetherian scheme over a field of char. 0
\mathscr{A} : sheaf of Azumaya algebras of rank n^{2} over X
For $1 \leq k<n$, a twisted grassmannian $p: \operatorname{Gr}(k, \mathscr{A}) \rightarrow X$ is defined by the representable functor
$(Y \xrightarrow{\phi} X) \mapsto \quad\left\{\right.$ sheaves of left ideals \mathscr{I} of $\phi^{*} \mathscr{A} \mid \phi^{*} \mathscr{A} / \mathscr{I}$ is a locally free \mathscr{O}_{Y}-modules of rank $\left.n(n-k)\right\}$.

Twisted grassmannians

X : Noetherian scheme over a field of char. 0
\mathscr{A} : sheaf of Azumaya algebras of rank n^{2} over X
For $1 \leq k<n$, a twisted grassmannian $p: \operatorname{Gr}(k, \mathscr{A}) \rightarrow X$ is defined by the representable functor
$(Y \xrightarrow{\phi} X) \mapsto \quad\left\{\right.$ sheaves of left ideals \mathscr{I} of $\phi^{*} \mathscr{A} \mid \phi^{*} \mathscr{A} / \mathscr{I}$ is a locally free \mathscr{O}_{Y}-modules of rank $\left.n(n-k)\right\}$.
\exists étale covering $i: U \rightarrow X$ and a locally free sheaf \mathscr{E} of rank n over U with the following pullback diagram

$$
\begin{array}{rl}
\operatorname{Gr}(k, \mathscr{E}) \simeq \operatorname{Gr}(k, \mathscr{E} n d(\mathscr{E})) \xrightarrow{j} \operatorname{Gr}(k, \mathscr{A}) \\
\downarrow^{q} & \left.\right|^{p} \\
U & X .
\end{array}
$$

Consider the tautological exact sequence of sheaves on $\operatorname{Gr}(k, \mathscr{E})$

$$
0 \rightarrow \mathscr{R} \rightarrow q^{*} \mathscr{E} \rightarrow \mathscr{Q} \rightarrow 0
$$

where $\operatorname{rank}(\mathscr{R})=k$.

Consider the tautological exact sequence of sheaves on $\operatorname{Gr}(k, \mathscr{E})$

$$
0 \rightarrow \mathscr{R} \rightarrow q^{*} \mathscr{E} \rightarrow \mathscr{Q} \rightarrow 0
$$

where $\operatorname{rank}(\mathscr{R})=k$.
For a partition $\alpha=\left(\alpha_{1}, \cdots, \alpha_{k}\right)$ with $0 \leq \alpha_{i} \leq n-k$, we denoted by S^{α} the Schur functor for α.
E.g. . If V is a k-dimensional vector space, then $S^{\alpha} V$ is the irreducible representation of $\mathrm{GL}(V)$ with the highest weight α.
. For $n=4$ and $k=2$, we have $S^{(i, 0)} \mathscr{R}=\operatorname{Sym}^{i} \mathscr{R}$,
$S^{(1,1)} \mathscr{R}=\wedge^{2} \mathscr{R}, S^{(2,1)} \mathscr{R}=\mathscr{R} \otimes \Lambda^{2} \mathscr{R}$, and $S^{(2,2)} \mathscr{R}=\Lambda^{2} \mathscr{R} \otimes \Lambda^{2} \mathscr{R}$.

Main result

Define $S(\alpha)$ to be the full subcategory of $\mathrm{D}(\operatorname{Gr}(k, \mathscr{A}))$ generated by \mathscr{M} in $\mathrm{D}(\operatorname{Gr}(k, \mathscr{A}))$ satisfying

$$
\left.\mathscr{M}\right|_{\operatorname{Gr}(k, \mathscr{E})} \simeq q^{*} \mathscr{N} \otimes S^{\alpha} \mathscr{R},
$$

for some $\mathscr{N} \in \mathrm{D}(U)$.

Main result

Define $S(\alpha)$ to be the full subcategory of $\mathrm{D}(\operatorname{Gr}(k, \mathscr{A}))$ generated by \mathscr{M} in $\mathrm{D}(\operatorname{Gr}(k, \mathscr{A}))$ satisfying

$$
\left.\mathscr{M}\right|_{\operatorname{Gr}(k, \mathscr{E})} \simeq q^{*} \mathscr{N} \otimes S^{\alpha} \mathscr{R},
$$

for some $\mathscr{N} \in \mathrm{D}(U)$.

Theorem
Let $\left(S(\alpha) \mid \alpha=\left(\alpha_{1}, \cdots, \alpha_{k}\right), 0 \leq \alpha_{i} \leq n-k\right)$ be a sequence of the full subcategories of $\mathrm{D}(\operatorname{Gr}(k, \mathscr{A}))$ by the lexicographical order on α. Then this sequence gives a semiorthogonal decomposition of $D(\operatorname{Gr}(k, \mathscr{A}))$.

Proof of theorem

Let $\alpha \neq \alpha^{\prime}$ with $0 \leq \alpha_{i}, \alpha_{i}^{\prime} \leq n-k$.
Claim 1: $R H o m\left(\mathscr{M}, \mathscr{M}^{\prime}\right)=0$ for $\mathscr{M} \in S(\alpha)$ and $\mathscr{M}^{\prime} \in S\left(\alpha^{\prime}\right)$.

Proof of theorem

Let $\alpha \neq \alpha^{\prime}$ with $0 \leq \alpha_{i}, \alpha_{i}^{\prime} \leq n-k$.
Claim 1: $R H o m\left(\mathscr{M}, \mathscr{M}^{\prime}\right)=0$ for $\mathscr{M} \in S(\alpha)$ and $\mathscr{M}^{\prime} \in S\left(\alpha^{\prime}\right)$.
By the local to global Ext spectral sequence, it's enough to show that $R \mathscr{H} \circ m\left(\mathscr{M}, \mathscr{M}^{\prime}\right)=0$.
Let $\left.\mathscr{M}\right|_{\operatorname{Gr}(k, \mathscr{E})} \simeq q^{*} \mathscr{N} \otimes S^{\alpha} \mathscr{R}$ and $\left.\mathscr{M}^{\prime}\right|_{\operatorname{Gr}(k, \mathscr{E})} \simeq q^{*} \mathscr{N}^{\prime} \otimes S^{\alpha^{\prime}} \mathscr{R}$.

Proof of theorem

Let $\alpha \neq \alpha^{\prime}$ with $0 \leq \alpha_{i}, \alpha_{i}^{\prime} \leq n-k$.
Claim 1: $R H o m\left(\mathscr{M}, \mathscr{M}^{\prime}\right)=0$ for $\mathscr{M} \in S(\alpha)$ and $\mathscr{M}^{\prime} \in S\left(\alpha^{\prime}\right)$.
By the local to global Ext spectral sequence, it's enough to show that $\operatorname{RHom}\left(\mathscr{M}, \mathscr{M}^{\prime}\right)=0$.
Let $\left.\mathscr{M}\right|_{\operatorname{Gr}(k, \mathscr{E})} \simeq q^{*} \mathscr{N} \otimes S^{\alpha} \mathscr{R}$ and $\left.\mathscr{M}^{\prime}\right|_{\operatorname{Gr}(k, \mathscr{E})} \simeq q^{*} \mathscr{N}^{\prime} \otimes S^{\alpha^{\prime}} \mathscr{R}$.
By the Littlewood-Richardson rule, we have

$$
R \mathscr{H} \operatorname{om}\left(S^{\alpha} \mathscr{R}, S^{\alpha^{\prime}} \mathscr{R}\right)=S^{\alpha^{\prime}} \mathscr{R} \otimes\left(S^{\alpha} \mathscr{R}\right)^{*}=\bigoplus n_{\beta} \cdot S^{\beta} \mathscr{R}
$$

where β is of the form $\left(\beta_{1}, \cdots, \beta_{k}\right)$, with $-(n-k) \leq \beta_{i} \leq n-k$.
By the Borel-Bott-Weil theorem, we have $H^{0}\left(\operatorname{Gr}(k, \mathscr{E}), S^{\beta} \mathscr{R}\right)=0$.

Proof of theorem

Therefore, we have

$$
\begin{equation*}
R q_{*}\left(\mathscr{H} \circ m\left(S^{\alpha} \mathscr{R}, S^{\alpha^{\prime}} \mathscr{R}\right)\right)=0 \tag{2}
\end{equation*}
$$

It is enough to show the result locally. By the adjoint property of $R q_{*}$ and q^{*}, projection formula, and (2), we have

$$
\begin{aligned}
& R \mathscr{H} \operatorname{om}\left(\left.\mathscr{M}\right|_{\operatorname{Gr}(k, \mathscr{E})},\left.\mathscr{M}^{\prime}\right|_{\operatorname{Gr}(k, \mathscr{E})}\right) \\
& =R \mathscr{H} \circ m\left(q^{*} \mathscr{N}, q^{*} \mathscr{N}^{\prime} \otimes \mathscr{H o m}\left(S^{\alpha} \mathscr{R}, S^{\left.\left.\alpha^{\prime} \mathscr{R}\right)\right)}\right.\right. \\
& =R \mathscr{H} \operatorname{om}\left(\mathscr{N}, R q_{*}\left(q ^ { * } \mathscr { N } ^ { \prime } \otimes \mathscr { H } \circ m \left(S^{\alpha} \mathscr{R}, S^{\left.\left.\left.\alpha^{\prime} \mathscr{R}\right)\right)\right)}\right.\right.\right. \\
& =R \mathscr{H} \circ m\left(\mathscr{N}, \mathscr{N}^{\prime} \otimes R q_{*}\left(\mathscr { H } \circ m \left(S^{\alpha} \mathscr{R}, S^{\left.\left.\left.\alpha^{\prime} \mathscr{R}\right)\right)\right)}\right.\right.\right. \\
& =0 .
\end{aligned}
$$

Proof of theorem

Claim 2: $(S(\alpha))$ generates $\mathrm{D}(\operatorname{Gr}(k, \mathscr{A}))$.
\exists sheaves \mathscr{F}_{α} of right $\mathscr{A}^{\otimes|\alpha|}$-modules and sheaves $\mathscr{G}_{\alpha^{*}}$ of left $\mathscr{A}^{\otimes|\alpha|}$-modules such that

$$
j^{*} \mathscr{F}_{\alpha} \simeq S^{\alpha} \mathscr{R} \otimes q^{*}\left(\left(\mathscr{E}^{*}\right)^{\otimes|\alpha|}\right), j^{*} \mathscr{G}_{\alpha^{*}} \simeq q^{*}\left(\mathscr{E}^{\otimes|\alpha|}\right) \otimes S^{\alpha^{*}} \mathscr{Q}^{*} .
$$

Moreover, the sequence
$\mathscr{R} \boxtimes \mathscr{Q}^{*} \rightarrow \mathcal{O}_{\operatorname{Gr}(k, \mathscr{E}) \times \operatorname{Gr}(k, \mathscr{E})} \rightarrow \mathcal{O}_{\Delta(\operatorname{Gr}(k, \mathscr{E}) / U)} \rightarrow 0$ descends to the sequence $\mathscr{F}_{(1)} \boxtimes \mathscr{G}_{(1)} \rightarrow \mathcal{O}_{\operatorname{Gr}(k, \mathscr{A}) \times \operatorname{Gr}(k, \mathscr{A})} \rightarrow \mathcal{O}_{\Delta(\operatorname{Gr}(k, \mathscr{A}) / X)} \rightarrow 0$.

Proof of theorem

Claim 2: $(S(\alpha))$ generates $\mathrm{D}(\operatorname{Gr}(k, \mathscr{A}))$.
\exists sheaves \mathscr{F}_{α} of right $\mathscr{A}^{\otimes|\alpha|}$-modules and sheaves $\mathscr{G}_{\alpha^{*}}$ of left $\mathscr{A}^{\otimes|\alpha|}$-modules such that

$$
j^{*} \mathscr{F}_{\alpha} \simeq S^{\alpha} \mathscr{R} \otimes q^{*}\left(\left(\mathscr{E}^{*}\right)^{\otimes|\alpha|}\right), j^{*} \mathscr{G}_{\alpha^{*}} \simeq q^{*}\left(\mathscr{E}^{\otimes|\alpha|}\right) \otimes S^{\alpha^{*}} \mathscr{Q}^{*} .
$$

Moreover, the sequence
$\mathscr{R} \boxtimes \mathscr{Q}^{*} \rightarrow \mathcal{O}_{\operatorname{Gr}(k, \mathscr{E}) \times \operatorname{Gr}(k, \mathscr{E})} \rightarrow \mathcal{O}_{\Delta(\operatorname{Gr}(k, \mathscr{E}) / U)} \rightarrow 0$ descends to the sequence $\mathscr{F}_{(1)} \boxtimes \mathscr{G}_{(1)} \rightarrow \mathcal{O}_{\operatorname{Gr}(k, \mathscr{A}) \times \operatorname{Gr}(k, \mathscr{A})} \rightarrow \mathcal{O}_{\Delta(\operatorname{Gr}(k, \mathscr{A}) / X)} \rightarrow 0$.
Hence, we have the Koszul resolution:

$$
\begin{aligned}
0 & \rightarrow \Lambda^{k(n-k)}\left(\mathscr{F}_{(1)} \boxtimes \mathscr{G}_{(1)}\right) \rightarrow \Lambda^{k(n-k)-1}\left(\mathscr{F}_{(1)} \boxtimes \mathscr{G}_{(1)}\right) \rightarrow \cdots \\
\cdots & \rightarrow \mathscr{F}_{(1)} \boxtimes \mathscr{G}_{(1)} \rightarrow \mathcal{O}_{\operatorname{Gr}(k, \mathscr{A}) \times x \operatorname{Gr}(k, \mathscr{A})} \rightarrow \mathcal{O}_{\Delta(\operatorname{Gr}(k, \mathscr{A}) / X)} \rightarrow 0 .
\end{aligned}
$$

Proof of theorem

$$
\begin{aligned}
& \text { As } \Lambda^{m}\left(\mathscr{F}_{(1)} \boxtimes \mathscr{G}_{(1)}\right)=\bigoplus_{|\alpha|=m} \mathscr{F}_{\alpha} \boxtimes \mathscr{G}_{\alpha^{*}} \text { for } 1 \leq m \leq k(n-k), \\
& \left.\qquad \mathcal{O}_{\Delta(\operatorname{Gr}(k, \mathscr{A}) / X)} \in\left\langle\pi_{1}^{*} \mathscr{F}_{\alpha} \otimes \pi_{2}^{*} \mathscr{G}_{\alpha^{*}}\right| 0 \leq|\alpha| \leq k(n-k)\right\rangle \\
& \text { of } D(\operatorname{Gr}(k, \mathscr{A}) \times \operatorname{Gr}(k, \mathscr{A})) .
\end{aligned}
$$

Proof of theorem

$$
\begin{aligned}
& \text { As } \Lambda^{m}\left(\mathscr{F}_{(1)} \boxtimes \mathscr{G}_{(1)}\right)=\bigoplus_{|\alpha|=m} \mathscr{F}_{\alpha} \boxtimes \mathscr{G}_{\alpha^{*}} \text { for } 1 \leq m \leq k(n-k), \\
& \left.\qquad \mathcal{O}_{\Delta(\operatorname{Gr}(k, \mathscr{A}) / X)} \in\left\langle\pi_{1}^{*} \mathscr{F}_{\alpha} \otimes \pi_{2}^{*} \mathscr{G}_{\alpha^{*}}\right| 0 \leq|\alpha| \leq k(n-k)\right\rangle \\
& \text { of } D(\operatorname{Gr}(k, \mathscr{A}) \times \operatorname{Gr}(k, \mathscr{A})) .
\end{aligned}
$$

Since we have $\mathscr{M}=R\left(\pi_{1}\right)_{*}\left(\pi_{2}^{*} \mathscr{M} \otimes \mathcal{O}_{\Delta(\operatorname{Gr}(k, \mathscr{A}) / X)}\right)$ for any $\mathscr{M} \in D(\operatorname{Gr}(k, \mathscr{A}))$, it is enough to verify that

$$
R\left(\pi_{1}\right)_{*}\left(\pi_{2}^{*} \mathscr{M} \otimes\left(\pi_{1}^{*} \mathscr{F}_{\alpha} \otimes \pi_{2}^{*} \mathscr{G}_{\alpha^{*}}\right)\right) \in S(\alpha):
$$

$R\left(\pi_{1}\right)_{*}\left(\pi_{2}^{*} \mathscr{M} \otimes\left(\pi_{1}^{*} \mathscr{F}_{\alpha} \otimes \pi_{2}^{*} \mathscr{G}_{\alpha^{*}}\right)\right)=R\left(\pi_{1}\right)_{*}\left(\pi_{2}^{*}\left(\mathscr{M} \otimes \mathscr{G}_{\alpha^{*}}\right)\right) \otimes \mathscr{F}_{\alpha}$, this is isomorphic to

$$
q^{*}\left(R q_{*}\left(\mathscr{M} \otimes S^{\alpha^{*}} \mathscr{Q}\right)\right) \otimes S^{\alpha} \mathscr{R} \text { over } \operatorname{Gr}(k, \mathscr{E})
$$

Twisted flags

Let $1 \leq k_{1}<\cdots<k_{m}<n$ be a sequence of integers.
We denote by $\mathrm{FI}\left(k_{1}, \cdots, k_{m}, \mathscr{A}\right)$ the functor defined by $(Y \xrightarrow{\phi} X) \mapsto$ the set of sheaves of left ideals $\mathscr{I}_{1} \subset \cdots \subset \mathscr{I}_{m}$ of $\phi^{*} \mathscr{A}$ such that $\phi^{*} \mathscr{A} / \mathscr{I}_{i}$ is a locally free \mathscr{O}_{Y}-modules of rank $n\left(n-k_{i}\right)$.

Twisted flags

Let $1 \leq k_{1}<\cdots<k_{m}<n$ be a sequence of integers.
We denote by $\mathrm{FI}\left(k_{1}, \cdots, k_{m}, \mathscr{A}\right)$ the functor defined by $(Y \xrightarrow{\phi} X) \mapsto$ the set of sheaves of left ideals $\mathscr{I}_{1} \subset \cdots \subset \mathscr{I}_{m}$ of $\phi^{*} \mathscr{A}$ such that $\phi^{*} \mathscr{A} / \mathscr{I}_{i}$ is a locally free \mathscr{O}_{Y}-modules of rank $n\left(n-k_{i}\right)$.
\exists an étale covering $i: U \rightarrow X$ and a locally free sheaf \mathscr{E} of rank n over U with the following pullback diagram

We have the tautological flags

$$
\mathscr{R}_{1} \hookrightarrow \cdots \hookrightarrow \mathscr{R}_{m} \hookrightarrow q^{*} \mathscr{E} \rightarrow \mathscr{Q}_{1} \rightarrow \cdots \rightarrow \mathscr{Q}_{m}
$$

where $\operatorname{rank}\left(\mathscr{R}_{i}\right)=k_{i}$ and $\operatorname{rank}\left(\mathscr{Q}_{i}\right)=n-k_{i}$.

We have the tautological flags

$$
\mathscr{R}_{1} \hookrightarrow \cdots \hookrightarrow \mathscr{R}_{m} \hookrightarrow q^{*} \mathscr{E} \rightarrow \mathscr{Q}_{1} \rightarrow \cdots \rightarrow \mathscr{Q}_{m}
$$

where $\operatorname{rank}\left(\mathscr{R}_{i}\right)=k_{i}$ and $\operatorname{rank}\left(\mathscr{Q}_{i}\right)=n-k_{i}$.
Let $\alpha(1), \cdots, \alpha(m-1), \alpha(m)$ be partitions of the forms

$$
\left(\alpha_{1}, \cdots, \alpha_{k_{1}}\right), \cdots,\left(\alpha_{1}, \cdots, \alpha_{k_{m-1}}\right),\left(\alpha_{1}, \cdots, \alpha_{k_{m}}\right)
$$

with $0 \leq \alpha_{i} \leq k_{2}-k_{1}, \cdots, 0 \leq \alpha_{i} \leq k_{m}-k_{m-1}, 0 \leq \alpha_{i} \leq n-k_{m}$, respectively.

We have the tautological flags

$$
\mathscr{R}_{1} \hookrightarrow \cdots \hookrightarrow \mathscr{R}_{m} \hookrightarrow q^{*} \mathscr{E} \rightarrow \mathscr{Q}_{1} \rightarrow \cdots \rightarrow \mathscr{Q}_{m}
$$

where $\operatorname{rank}\left(\mathscr{R}_{i}\right)=k_{i}$ and $\operatorname{rank}\left(\mathscr{Q}_{i}\right)=n-k_{i}$.
Let $\alpha(1), \cdots, \alpha(m-1), \alpha(m)$ be partitions of the forms

$$
\left(\alpha_{1}, \cdots, \alpha_{k_{1}}\right), \cdots,\left(\alpha_{1}, \cdots, \alpha_{k_{m-1}}\right),\left(\alpha_{1}, \cdots, \alpha_{k_{m}}\right)
$$

with $0 \leq \alpha_{i} \leq k_{2}-k_{1}, \cdots, 0 \leq \alpha_{i} \leq k_{m}-k_{m-1}, 0 \leq \alpha_{i} \leq n-k_{m}$, respectively.
We define $S(\alpha(1), \cdots, \alpha(m))$ to be the full subcategory of $\mathrm{D}\left(\mathrm{Fl}\left(k_{1}, \cdots, k_{m}, \mathscr{A}\right)\right)$ generated by \mathscr{M} in $\mathrm{D}\left(\mathrm{Fl}\left(k_{1}, \cdots, k_{m}, \mathscr{A}\right)\right)$ satisfying

$$
\left.\mathscr{M}\right|_{\mathrm{FI}\left(k_{1}, \cdots, k_{m}, \mathscr{E}\right)} \simeq q^{*} \mathscr{N} \otimes S^{\alpha(1) \mathscr{R}_{1} \otimes \cdots \otimes S^{\alpha(m)} \mathscr{R}_{m}, ~}
$$

for some $\mathscr{N} \in \mathrm{D}(U)$.

Corollary

Let $(S(\alpha(1), \cdots, \alpha(m)) \mid \forall$ partitions of the form $\alpha(i), 1 \leq i \leq m)$ be a sequence of the full subcategories of $\mathrm{D}\left(\mathrm{FI}\left(k_{1}, \cdots, k_{m}, \mathscr{A}\right)\right)$ in lexicographical order. Then this gives a semiorthogonal decomposition of $\mathrm{D}\left(\mathrm{Fl}\left(k_{1}, \cdots, k_{m}, \mathscr{A}\right)\right)$.

Corollary

Let $(S(\alpha(1), \cdots, \alpha(m)) \mid \forall$ partitions of the form $\alpha(i), 1 \leq i \leq m)$ be a sequence of the full subcategories of $\mathrm{D}\left(\mathrm{FI}\left(k_{1}, \cdots, k_{m}, \mathscr{A}\right)\right)$ in lexicographical order. Then this gives a semiorthogonal decomposition of $\mathrm{D}\left(\mathrm{Fl}\left(k_{1}, \cdots, k_{m}, \mathscr{A}\right)\right)$.

Proof

Induction on m. Assume that the result holds for $m-1$. There are projections

$$
\mathrm{FI}\left(k_{1}, \cdots, k_{m}, \mathscr{E}\right) \xrightarrow{q_{m}} \cdots \xrightarrow{q_{2}} \mathrm{FI}\left(k_{m}, \mathscr{E}\right) \xrightarrow{q_{1}} U
$$

and

$$
\mathrm{FI}\left(k_{1}, \cdots, k_{m}, \mathscr{A}\right) \xrightarrow{p_{m}} \cdots \xrightarrow{p_{2}} \mathrm{FI}\left(k_{m}, \mathscr{A}\right) \xrightarrow{p_{1}} X
$$

Let $\mathscr{R}_{2}^{\prime} \subset\left(q_{1} \circ \cdots \circ q_{m-1}\right)^{*} \mathscr{E}$ be the tautological subsheaf over $\mathrm{FI}\left(k_{2}, \cdots, k_{m}, \mathscr{E}\right)$.
Let \mathscr{A}^{\prime} be the sheaf of Azumaya algebra over $\mathrm{FI}\left(k_{2}, \cdots, k_{m}, \mathscr{A}\right)$ from \mathscr{E} nd $\left(\mathscr{R}_{2}^{\prime}\right)$ by descent.

Let $\mathscr{R}_{2}^{\prime} \subset\left(q_{1} \circ \cdots \circ q_{m-1}\right)^{*} \mathscr{E}$ be the tautological subsheaf over $\mathrm{Fl}\left(k_{2}, \cdots, k_{m}, \mathscr{E}\right)$.
Let \mathscr{A}^{\prime} be the sheaf of Azumaya algebra over $\mathrm{FI}\left(k_{2}, \cdots, k_{m}, \mathscr{A}\right)$ from $\mathscr{E} n d\left(\mathscr{R}_{2}^{\prime}\right)$ by descent.

Then, we have

$$
\operatorname{FI}\left(k_{1}, \cdots, k_{m}, \mathscr{E}\right)=\operatorname{Gr}_{\mathrm{FI}\left(k_{2}, \cdots, k_{m}, \mathscr{E}\right)}\left(k_{1}, \mathscr{R}_{2}^{\prime}\right)
$$

and

$$
\operatorname{FI}\left(k_{1}, \cdots, k_{m}, \mathscr{A}\right)=\operatorname{Gr}_{\mathrm{FI}\left(k_{2}, \cdots, k_{m}, \mathscr{A}\right)}\left(k_{1}, \mathscr{A}^{\prime}\right) .
$$

Now the result follows from the proof Theorem.

Thank you.

