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Semiorthogonal decomposition

T : triangulated category which is linear over a field F .

Si : full triangulated subcategory of T .

S⊥i : full subcategory of T given by T ∈ T such that for all S ∈ Si
HomT (S ,T ) = 0.

A sequence (S1, . . . ,Sn) such that 〈Si ,S⊥i 〉 = T for all 1 ≤ i ≤ n
is called semiorthogonal if

Si ⊂ S⊥j for all 1 ≤ i < j ≤ n.

A semiorthogonal sequence (S1, . . . ,Sn) is called a
semiorthogonal decomposition for T if T = 〈S1, . . . ,Sn〉.
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Exceptional collection

A sequence (E1, . . . ,En) of obejcts in T such that for all 1 ≤ i ≤ n

Hom(Ei ,Ei [k]) =

{
0 if k 6= 0

F otherwise

is called exceptional if

Hom(Ej ,Ei [k]) = 0 for all 1 ≤ i < j ≤ n and all k.

An exceptional sequence (E1, . . . ,En) is said to be full if
T = 〈E1, . . . ,En〉.
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Examples: semiorthogonal decomposition

(i) Any full traingulated subcategory S ⊂ T defines a
semiorthogonal decomposition for T if 〈S,S⊥〉 = T .

(ii) Let (S1, . . . ,Sn) be a sequence of full traingulated
subcategories of T such that Si ⊂ S⊥j for all 1 ≤ i < j ≤ n.
If the sequence generates T , then this sequence defines a
semiorthogonal decomposition for T (without assuming the
condition 〈Si ,S⊥i 〉 = T ).

(iii) Let (E1, . . . ,En) be a (full) exceptional collection in T . Then,
the seq.

(〈E1〉, . . . , 〈En〉)

gives a semiorthogonal seq. (decomposition).
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Examples: exceptional collection

T = D(X ) := the bounded derived category of coherent sheaves
on a scheme X . For any F•,G• ∈ T ,

HomT (F•,G•[k]) = Extk(F•,G•).

(i) (Beilinson) Let X = Pn
F = P(V ). Then,

(O(−n),O(−n + 1), . . . ,O(−1),O)

is a full exceptional sequence:

� Extk(O(j),O(i)) = Hk(X ,O(i − j)) = F (if i = j , k = 0), or 0.

� Let E := O(1)� Q, where 0→ O(−1)→ V ⊗ O → Q → 0.

For idV = s ∈ H0(X × X ,E ), we have Z (s) = ∆ ⊂ X × X and

0→ ∧n(E ∗)→ ∧n−1(E ∗)→ · · · → E ∗ → OX×X → O∆ → 0. (1)
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For F ∈ D(X × X ), define Φ(F ) : T → T by

G 7→ (π1)∗(π
∗
2G ⊗F ).

Then, for any H ∈ T , we have

Φ(O∆)(H ) = H , Φ(∧i (E ∗))(H ) = H•(X ,H ⊗ Ωi (i))⊗O(−i).

As Φ is exact, the result follows from (1).

(ii) Exceptional collection need not always exist: for instance, if X
is a smooth projective variety of dim(X ) = n with trivial canonical
class, then

F = HomT (E ,E ) = Extn(E ,E )∗ = 0.
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Question : exceptional collection

Kapranov constructed full exceptional collections on
Grassmannians and projective quadrics.

Question
Does any projective homogeneous variety G/P under a split semi
simple algebraic group G admit a full exceptional collection?

� Type of G = An,G2: full exceptional collections were constructed
by Kapranov, Kuznetsov.

� Types of G = Bn,Cn,Dn: full exceptional collections for
P = P1,P2 were constructed by Kapranov, Kuznetsov.

� Type of G = E6,E7,E8,F4: this is completely open.
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Generalization: semiorthogonal decomposition

� Orlov and Kuznetsov generalized Kapronov’s results on
grassmannians and quadrics to semiorthogonal decompositions,
respectively.

E.g. Given a projective bundle p : P(E )→ X associated to a
vector bundle E over X of rank n + 1, the sequence

(D(X )⊗ OP(E )(−n), . . . ,D(X )⊗ OP(E )(−1),D(X ))

gives a semiorthogonal decomposition for P(E ).

� Bernardara extended Orlov’s result on projective bundles to the
twisted forms.

� The goal of this talk is to extend Orlov’s result on grassmannian
bundles to the twisted forms.
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Twisted grassmannians

X : Noetherian scheme over a field of char. 0

A : sheaf of Azumaya algebras of rank n2 over X

For 1 ≤ k < n, a twisted grassmannian p : Gr(k ,A )→ X is
defined by the representable functor

(Y
φ→ X ) 7→ { sheaves of left ideals I of φ∗A | φ∗A /I is a

locally free OY -modules of rank n(n − k)}.

∃ étale covering i : U → X and a locally free sheaf E of rank n
over U with the following pullback diagram

Gr(k ,E ) ' Gr(k ,End(E ))
j //

q

��

Gr(k ,A )

p

��
U

i // X .
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Consider the tautological exact sequence of sheaves on Gr(k ,E )

0→ R → q∗E → Q → 0,

where rank(R) = k .

For a partition α = (α1, · · · , αk) with 0 ≤ αi ≤ n − k , we denoted
by Sα the Schur functor for α.

E.g. � If V is a k-dimensional vector space, then SαV is the
irreducible representation of GL(V ) with the highest weight α.

� For n = 4 and k = 2, we have S (i ,0)R = Symi R,
S (1,1)R = ∧2R, S (2,1)R = R⊗∧2R, and S (2,2)R = ∧2R⊗∧2R.
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Main result

Define S(α) to be the full subcategory of D(Gr(k,A )) generated
by M in D(Gr(k ,A )) satisfying

M |Gr(k,E )' q∗N ⊗ SαR,

for some N ∈ D(U).

Theorem
Let (S(α) |α = (α1, · · · , αk), 0 ≤ αi ≤ n − k) be a sequence of
the full subcategories of D(Gr(k ,A )) by the lexicographical order
on α. Then this sequence gives a semiorthogonal decomposition of
D(Gr(k,A )).
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Proof of theorem

Let α 6= α′ with 0 ≤ αi , α
′
i ≤ n − k .

Claim 1: RHom(M ,M ′) = 0 for M ∈ S(α) and M ′ ∈ S(α′).

By the local to global Ext spectral sequence, it’s enough to show
that RHom(M ,M ′) = 0.

Let M |Gr(k,E )' q∗N ⊗ SαR and M ′|Gr(k,E )' q∗N ′ ⊗ Sα
′
R.

By the Littlewood-Richardson rule, we have

RHom(SαR,Sα
′
R) = Sα

′
R ⊗ (SαR)∗ =

⊕
nβ · SβR,

where β is of the form (β1, · · · , βk), with −(n − k) ≤ βi ≤ n − k.

By the Borel-Bott-Weil theorem, we have H0(Gr(k,E ),SβR) = 0.
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Proof of theorem

Therefore, we have

Rq∗(Hom(SαR,Sα
′
R)) = 0. (2)

It is enough to show the result locally. By the adjoint property of
Rq∗ and q∗, projection formula, and (2), we have

RHom(M |Gr(k,E ),M
′|Gr(k,E ))

= RHom(q∗N , q∗N ′ ⊗Hom(SαR,Sα
′
R))

= RHom(N ,Rq∗(q
∗N ′ ⊗Hom(SαR, Sα

′
R)))

= RHom(N ,N ′ ⊗ Rq∗(Hom(SαR,Sα
′
R)))

= 0.
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Proof of theorem

Claim 2: (S(α)) generates D(Gr(k ,A )).

∃ sheaves Fα of right A ⊗|α|-modules and sheaves Gα∗ of left
A ⊗|α|-modules such that

j∗Fα ' SαR ⊗ q∗((E ∗)⊗|α|), j∗Gα∗ ' q∗(E ⊗|α|)⊗ Sα
∗
Q∗.

Moreover, the sequence

R �Q∗ → OGr(k,E )×Gr(k,E ) → O∆(Gr(k,E )/U) → 0 descends to the

sequence F(1) � G(1) → OGr(k,A )×Gr(k,A ) → O∆(Gr(k,A )/X ) → 0.

Hence, we have the Koszul resolution:

0→ Λk(n−k)(F(1) � G(1))→ Λk(n−k)−1(F(1) � G(1))→ · · ·

· · · → F(1) � G(1) → OGr(k,A )×X Gr(k,A ) → O∆(Gr(k,A )/X ) → 0.
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Proof of theorem

As Λm(F(1) � G(1)) =
⊕
|α|=m Fα � Gα∗ for 1 ≤ m ≤ k(n − k),

O∆(Gr(k,A )/X ) ∈ 〈π∗1Fα ⊗ π∗2Gα∗ | 0 ≤ |α| ≤ k(n − k)〉

of D(Gr(k ,A )× Gr(k,A )).

Since we have M = R(π1)∗(π
∗
2M ⊗O∆(Gr(k,A )/X )) for any

M ∈ D(Gr(k ,A )), it is enough to verify that

R(π1)∗
(
π∗2M ⊗ (π∗1Fα ⊗ π∗2Gα∗)

)
∈ S(α) :

R(π1)∗
(
π∗2M ⊗ (π∗1Fα⊗ π∗2Gα∗)

)
= R(π1)∗

(
π∗2(M ⊗Gα∗)

)
⊗Fα,

this is isomorphic to

q∗
(
Rq∗(M ⊗ Sα

∗
Q)
)
⊗ SαR over Gr(k,E ).
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Twisted flags

Let 1 ≤ k1 < · · · < km < n be a sequence of integers.

We denote by Fl(k1, · · · , km,A ) the functor defined by

(Y
φ→ X ) 7→ the set of sheaves of left ideals I1 ⊂ · · · ⊂ Im of

φ∗A such that φ∗A /Ii is a locally free OY -modules of rank
n(n − ki ).

∃ an étale covering i : U → X and a locally free sheaf E of rank n
over U with the following pullback diagram

Fl(k1, · · · , km,End(E ))
j //

q

��

Fl(k1, · · · , km,A )

p

��
U

i // X .
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We have the tautological flags

R1 ↪→ · · · ↪→ Rm ↪→ q∗E � Q1 � · · ·� Qm,

where rank(Ri ) = ki and rank(Qi ) = n − ki .

Let α(1), · · · , α(m − 1), α(m) be partitions of the forms

(α1, · · · , αk1), · · · , (α1, · · · , αkm−1), (α1, · · · , αkm)

with 0 ≤ αi ≤ k2 − k1, · · · , 0 ≤ αi ≤ km − km−1, 0 ≤ αi ≤ n − km,
respectively.

We define S(α(1), · · · , α(m)) to be the full subcategory of
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Corollary

Let (S(α(1), · · · , α(m)) | ∀ partitions of the form α(i), 1 ≤ i ≤ m)
be a sequence of the full subcategories of D(Fl(k1, · · · , km,A )) in
lexicographical order. Then this gives a semiorthogonal
decomposition of D(Fl(k1, · · · , km,A )).

Proof
Induction on m. Assume that the result holds for m− 1. There are
projections

Fl(k1, · · · , km,E )
qm−→ · · · q2−→ Fl(km,E )

q1−→ U

and
Fl(k1, · · · , km,A )

pm−→ · · · p2−→ Fl(km,A )
p1−→ X .
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Let R′2 ⊂ (q1 ◦ · · · ◦ qm−1)∗E be the tautological subsheaf over
Fl(k2, · · · , km,E ).

Let A ′ be the sheaf of Azumaya algebra over Fl(k2, · · · , km,A )
from End(R′2) by descent.

Then, we have

Fl(k1, · · · , km,E ) = GrFl(k2,··· ,km,E )(k1,R
′
2)

and
Fl(k1, · · · , km,A ) = GrFl(k2,··· ,km,A )(k1,A

′).

Now the result follows from the proof Theorem.
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Thank you.
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